F$_2$ region response to meteorological phenomena and geomagnetic disturbances: O (1S) dayglow as a proxy to thermospheric dynamics

A.K. Upadhayaya & Sumedha Gupta
Radio & Atmospheric Sciences Division
CSIR-National Physical Laboratory
New Delhi-110012, India
OUTLINE

• Introduction
• F2 region response to geomagnetic disturbances
• F2 region response to meteorological phenomena
• F2 region response to earthquake events
Objective:

Introduction

- The responses of the upper atmosphere to geomagnetic activity have been studied for a long period of time to the present, using experimental techniques as well as theoretical models. Many reviews on this topic cover the subject in details (e.g., Abdu, 1997; Fuller-Rowell et al., 1997; Rees, 1996; Schunk and Sojka, 1996; Buonsanto, 1999, Danilov and Lastovička 2001; Kelley et al., 2011, Balan et al., 2011).

- It is quite often seen that the normal ionospheric variability (which cannot be associated with an event) is at times even larger than the variability due to a transient (solar storm) or meteorological event. A good part of this unanswered reason for the variability could perhaps be related to possible changes in the neutral composition in thermosphere. While there are daily indices like Fl0.7 and Ap or Kp for solar ionizing radiation and magnetic activity respectively, there are none to represent daily changes in neutral atmosphere and electrodynamics. Briefly, this seems to be a major reason for the inability to explain the day-to-day and hour-to-hour variability seen in ionospheric F2-layer.

- In the present study an attempt is made to examine the response of equatorial and low latitudes F-region ionospheric parameters (foF2 and h’F) during the disturbed periods of geomagnetic storms and to investigate the response of green line dayglow emission under quiet and strong geomagnetic conditions.
O(^1S) dayglow emission
Modeling $O(1S)$ dayglow emission:

HEUVAC solar flux model (Richard et al., 2006)

$A_p = 20$ (quiet) and $A_p=200$ (strong) geomagnetic condition.

$F_{10.7}=130$ (fixed)

Common solar ionizing condition for estimating VER.
1. Dissociative recombination

$O^+_2 + e \rightarrow O(1S) + O$

The production rate of $O(1S)$ due to this reaction is given by $R_{\text{DR}}[O(1S)] = \beta_1 K_1 [O_2^+][e]$, where β_1 and K_1 represents the quantum yield and reaction rate coefficient of the reaction, e represents an electron.

2. Collisional deactivation of $N_2(A^3\Sigma^+)$

$N_2 + ep_h \rightarrow N_2(A^3\Sigma^+) \rightarrow N_2(A^3\Sigma^+) + O \rightarrow O(1S) + N_2$

The production rate of $O(1S)$ due to the photoelectron impact on molecular nitrogen is calculated from $R[N_2(A^3\Sigma^+)] = N_s \int_{E_p}^{\infty} \sigma(E_p, z, \alpha) \sigma_{\text{N}_2\text{A}}(E_p) dE_p$, where $[N_s]$ is the density of molecular nitrogen, $\sigma(E_p, z, \alpha)$ is the photoelectron flux which is a function of photoelectron energy E_p at altitude z and solar zenith angle α, and $\sigma_{\text{N}_2\text{A}}(E_p)$ is the effective excitation cross section for $N_2(A^3\Sigma^+)$ production. The production rate of $O(1S)$ emission due to energy transfer from $N_2(A^3\Sigma^+)$ from the subsequent reaction is given by $R_{\text{N}_2\text{A}}[O(1S)] = \beta_2 K_2 [N_2(A^3\Sigma^+)] [O]$, where β_2 and K_2 represents the quantum yield and reaction rate coefficient of the reaction.

3. Photoelectron excitation

$O + ep_h \rightarrow O(1S) + ep_h$

The production rate of $O(1S)$ due to this reaction is calculated using the expression $R_{\text{ph}}[O(1S)] = [O] \int_{E_p}^{\infty} \sigma(E_p, z, \alpha) \sigma_{\text{O}_2\text{S}}(E_p) dE_p$, where $R_{\text{ph}}(O(1S))$ is the production of $O(1S)$ due to photoelectron impact excitation, $[O]$ is the density of atomic oxygen, $\sigma(E_p, z, \alpha)$ is the photoelectron flux which is a function of photoelectron energy E_p at altitude z and solar zenith angle α, and $\sigma_{\text{O}_2\text{S}}(E_p)$ is the electron excitation cross section of O(1S) state.

4. Photodissociation of O_2 molecules

$O_2 + h\phi (< 1332.5 \text{ A}^+) \rightarrow O + O(1S)$

The production rate of $O(1S)$ due to this reaction is $R_{\text{pd}}[O(1S)] = [O_J] f_{(h\phi)} Q \sigma_d d\lambda$, where $[O_J]$ represents density of molecular oxygen, $f_{(h\phi)}$ represents solar flux at altitude h for wavelength λ, Q_λ is the quantum yield at fixed wavelength λ and σ_d is photo absorption cross section of molecular oxygen.

5. The three bodu recombination reaction

$O + O + M \rightarrow O_2 + M$. followed by $O_2^+ + O \rightarrow O(1S) + O_2$

γ, k represent the quantum yield and reaction rate coefficients of the reaction and O_2^+ represents the excited state of molecular oxygen. $R_{\text{TH}}[O(1S)]$ represents production due to three body reaction. The total production rate $R_{\text{TOT}}[O(1S)]$ of $O(1S)$ due to all these reactions is given by $R_{\text{TOT}}[O(1S)] = R_{\text{DR}}[O(1S)] + R_{\text{N}_2\text{A}}[O(1S)] + R_{\text{ph}}[O(1S)] + R_{\text{pd}}[O(1S)] + R_{\text{TH}}[O(1S)]$

The first three reactions are primarily responsible for the thermospheric peak (at an altitude of ~160 km) whereas the last two reactions are responsible for the mesospheric peak (~96 km) of the greenline dayglow emission.

Loss Processes

$O(1S) + (O_2, O) \rightarrow (3P) + (O_2, O)$

$O(1S) \rightarrow (1D) + \nu v(557.7 \text{ nm})$

$O(1S) \rightarrow (3P, 1D) + \nu v(\text{total})$

The quenching factor is given by $Q_z = \frac{A_z}{(A_g + K_1 [O_2] + K_8 [O])]$ where $[Z]$ denotes the number density of the corresponding species Z, A_g and A_z are the Einstein’s coefficients; and K_1, K_8 are the rate coefficients for the reactions. The total volume emission rate of $O(1S)$ is obtained by following equation:

$\text{VER}[O(1S)] = Q_z R_{\text{TOT}}[O(1S)]$
Summary of magnetic storm events studied

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Begin Day</th>
<th>SSC* (EMT=EMT+5)</th>
<th>Minimum Dst (nT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>04</td>
<td>11</td>
<td>1843</td>
<td>-271</td>
</tr>
<tr>
<td>2001</td>
<td>11</td>
<td>24</td>
<td>1000</td>
<td>-221</td>
</tr>
<tr>
<td>2001</td>
<td>10</td>
<td>1</td>
<td>0025</td>
<td>-148</td>
</tr>
<tr>
<td>2003</td>
<td>11</td>
<td>20</td>
<td>1700</td>
<td>-422</td>
</tr>
<tr>
<td>2006</td>
<td>04</td>
<td>14</td>
<td>0800</td>
<td>-98</td>
</tr>
</tbody>
</table>

*Storm sudden commencement
O/N₂ ratio is measured from GUVI instrument on TIMED satellite.

Intensity variation for O(¹S) dayglow emission (557.7 nm) is simulated using GLOW model.

Ionosonde and IRI model are used to obtain ionospheric parameters for equatorial and low latitude stations.

<table>
<thead>
<tr>
<th>Station</th>
<th>Geographic Latitude</th>
<th>Geographic Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiruvanthanapuram</td>
<td>8.5 °N</td>
<td>76.8 °E</td>
</tr>
<tr>
<td>Delhi</td>
<td>28.6 °N</td>
<td>77.2 °E</td>
</tr>
</tbody>
</table>
1. 20th – 22nd Nov 2003

- Maximum deviation in foF2 during recovery phase.
- h’F variation shows large increase during main phase.
- Modelled greenline dayglow intensities show increase during main phase of the storm.

- 24% enhancement
Well predicted by IRI model

Smaller variations in order of magnitude is predicted by IRI model

Smaller variations as compared to the observations

Very little variation

IRI Model Plots
Significant changes in O/N2 occurred during this storm event with reference to the quiet time behavior.

A comparison of the O/N2 behavior for these three days with the deviation in foF2 from the quiet days for both stations, shows that they follow each other.

A positive deviation in ΔfoF2 is associated with a rise in O/N2, and vice-versa.
The changes in O (‘S) thermospheric peak is simulated to examine its response during varying geomagnetic condition as it will be an indicator to the changing neutral composition.

Averaged latitudinal variation of intensity of 5577Å dayglow emission under vernal equinox conditions (March/April 2013) at various local times.

(a) The volume emission rate of O(1S) as a function of solar zenith angle (SZA) with updated GLOW model run under quiet and strong geomagnetic condition.
(b) The peak altitude of O(1S) as a function of solar zenith angle (SZA) with GLOW model run under quiet and strong geomagnetic condition.

- Decrease of about 30–40% in peak VER with SZA
- Increase of about 8 to 10% in peak altitude with SZA.
- This decrease in VER causes a corresponding decrease in intensity during the storm time at thermospheric peak heights.
At thermospheric peak heights, the concentrations of [N2] and [O] along with SZA, will be important factors in deciding the emission rates and in turn the ionospheric behavior observed at particular latitude and longitude.

Upadhayaya, A. K (2016), *J. Geophys. Res. Space Physics*
The possibility of links between the meteorological phenomena and the upper atmosphere have been discussed very profoundly during the last two decades (e.g. Forbes and Leveroni, 1992; Hagan et al., 2001; Abdu et al., 2006; Lastovicka, 2006; Fuller-Rowell et al., 2008).

One of the well known meteorological phenomenon which could be an important agent in this link is the large meterological variation in the winter time polar stratosphere, called the sudden stratospheric warming (SSW). During a SSW there is a sudden increase in stratospheric temperature, (which could be as large as 70 K), the polar vortex shifts off the pole and the zonal wind (U) become weak. This type of warming is designated as minor. However, if the vortex breaks up, and the zonal wind (U) changes direction then the event is designated as a major SSW.

Although there have been some early attempts for identifying any ionospheric response to meteorological events like the sudden stratospheric warmings from theory, as well as from measurements (e.g. Liu and Roble 2002, Kazimirovsky et al., 1971, Danilov and Vanina 2003), the field has seen relatively a vigorous activity only recently.
Most of these studies have been confined to the western hemisphere, particularly the 75ºW meridian. In view of the large longitudinal dependence of the equatorial electrodynamic perturbations during SSWs, we have attempted to examine ionospheric effects following SSW events of 2009 to 2016 in the Asian zone by using ionosonde data from six different stations. These stations cover a broad latitude range from 23º N to 45º N.

We find there are some perceptible changes in the ionosphere following these warmings at these stations.

We then compare the magnitude of these changes with the normal day-to-day and hour-to-hour variability which exists in the ionospheric F2 region even at times when there are no SSWs and solar and magnetic indices are quite stable and close to their lowest values.

We examined ionospheric response to the following SSW events.

- Winter of 2009-2010
- Winter of 2010-2011
- Winter of 2011-2012
- Winter of 2012-2013
- Winter of 2013-2014
- Winter of 2014-2015
- Winter of 2015-2016
To study SSW response, Delhi (digisonde) and Japanese ionospheric data is used: (NICT - World Data Centre, http://wdc.nict.go.jp/IONO/wdc/index.html)

<table>
<thead>
<tr>
<th>Station</th>
<th>Geographic Latitude</th>
<th>Geographic Longitude</th>
<th>Geomagnetic Latitude</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okinawa</td>
<td>26.6°N</td>
<td>121.8°E</td>
<td>17.0°N</td>
<td>36.8°</td>
</tr>
<tr>
<td>Delhi</td>
<td>28.2°N</td>
<td>77.6°E</td>
<td>19.2°N</td>
<td>42.4°</td>
</tr>
<tr>
<td>Yamagawa</td>
<td>31.2°N</td>
<td>130.6°E</td>
<td>21.7°N</td>
<td>43.8°</td>
</tr>
<tr>
<td>Kokubunji</td>
<td>35.71°N</td>
<td>139.49°E</td>
<td>26.8°N</td>
<td>49°</td>
</tr>
<tr>
<td>Wakkanai</td>
<td>45.1°N</td>
<td>141.7°E</td>
<td>36.4°N</td>
<td>59.3°</td>
</tr>
</tbody>
</table>
(a) Okinawa
(b) Delhi
(c) Yamagawa
(d) Kokubunji
(e) Wakkanai
4th AOSWA Workshop, 24-27 Oct 2016

(a) Okinawa

(b) Delhi

(c) Yamagawa

(d) Kokubunji

(e) Wakkanai

Days (1st December 2014 onwards)
RESULTS

- It is found that by and large, ΔfoF2 varies semidiurnally during SSW period, with morning enhancement and afternoon depression.
- Mostly, depression is seen during the SSW peak days.
- Such variations for low mid latitude station, Okinawa, seem to be correlated with the equatorial electrojet strength (EEJ) and total electron content (VTEC).
- Analysis of periodicity of these ionospheric perturbations during SSW periods shows a 4-5 day.
- The ionospheric response to SSW decreases in intensity and extent as the latitude increases.
- It is also found that there are days (including quiet days) when variations in foF2 values are comparable and at times even larger than the values seen during SSW period.

Summary

<table>
<thead>
<tr>
<th>SSW event</th>
<th>ΔT (°K)</th>
<th>Electron density max % enhancement during SSW period</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Major</td>
<td>20.07 210.2%</td>
</tr>
<tr>
<td>2011</td>
<td>Minor</td>
<td>18.72 110.8%</td>
</tr>
<tr>
<td>2012</td>
<td>Minor</td>
<td>33.36 174.9%</td>
</tr>
<tr>
<td>2013</td>
<td>Major</td>
<td>37.34 185.2%</td>
</tr>
<tr>
<td>2014</td>
<td>Major</td>
<td>32.07 113.1%</td>
</tr>
<tr>
<td>2015</td>
<td>Minor</td>
<td>26.16 228.3%</td>
</tr>
<tr>
<td>2016</td>
<td>Major</td>
<td>49.12 150.95%</td>
</tr>
</tbody>
</table>
(C) Response to Earthquake events of 2015 and early 2016

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Date</th>
<th>Time (UT)</th>
<th>Magnitude (M)</th>
<th>Epicentre</th>
<th>Location</th>
<th>Radius of Earthquake Preparation Zone (km)</th>
<th>Distance from Delhi (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7 Dec 2015</td>
<td>07:50:02</td>
<td>7.0</td>
<td>Tajikistan</td>
<td>38.1, 72.9</td>
<td>1023.3</td>
<td>~1105*</td>
</tr>
<tr>
<td>2.</td>
<td>26 Oct 2015</td>
<td>09:09:31</td>
<td>7.5</td>
<td>Hindu Kush, Afghanistan</td>
<td>36.5, 70.8</td>
<td>1678.8</td>
<td>~1005</td>
</tr>
<tr>
<td>3.</td>
<td>12 May 2015</td>
<td>07:05:19</td>
<td>7.3</td>
<td>Nepal</td>
<td>27.7, 86.0</td>
<td>1380.4</td>
<td>~875</td>
</tr>
<tr>
<td>4.</td>
<td>25 & 26 Apr 2015</td>
<td>06:11:25</td>
<td>7.9, 6.9</td>
<td>Nepal</td>
<td>28.1, 27.6 84.6, 85.9</td>
<td>2187.7, 933.3</td>
<td>~702, ~857</td>
</tr>
<tr>
<td>5.</td>
<td>3 Jan 2016</td>
<td>23:05:16</td>
<td>6.7</td>
<td>Tamenglong, Manipur</td>
<td>24.8, 93.5</td>
<td>760.3</td>
<td>~1670.6*</td>
</tr>
</tbody>
</table>

* Observing station lies outside the earthquake preparation zone as given by Dobrovolsky et al. [1979].
Abnormal Variation in foF2

Geomagnetic Storm
An increase in Δf_{oF2} values 4 days prior to the earthquake on 26th October at 09:09 UT resulted in an anomalous ~207% increase in electron density at ionospheric monitoring station Delhi.
Results & Conclusion

• Perceptible ionospheric perturbations indicating towards possibility of seismo-ionospheric coupling. Maximum peak electron density observed $\sim 207\%$.

• By and large significant enhancement in foF2 observed 3-4 days prior to the earthquake events.

• The maximum effect of the earthquake is seen for cases when the observing station was outside the earthquake preparation zone [Dobrovolsky, 1979]. Mostly, maximum depression is observed on the earthquake event day.

• The magnitude of variation in electron density as observed because of meteorological phenomenon of SSW event of 2015 is comparable to the variation seen due to the earthquake events in 2015 and both of these variations are reasonably similar in magnitude to that what has been seen during geomagnetic storm at these stations.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Earthquake event</th>
<th>Anomaly seen prior to the event (days)</th>
<th>Electron density variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Max Enhancement</td>
</tr>
<tr>
<td>1.</td>
<td>7 Dec 2015</td>
<td>4</td>
<td>207.2</td>
</tr>
<tr>
<td>2.</td>
<td>26 Oct 2015</td>
<td>5-3</td>
<td>137.5</td>
</tr>
<tr>
<td>3.</td>
<td>12 May 2015</td>
<td>5</td>
<td>136.98</td>
</tr>
<tr>
<td>4.</td>
<td>25 & 26 April 2015</td>
<td>2,3,6</td>
<td>85.91</td>
</tr>
<tr>
<td>5.</td>
<td>3 Jan 2016</td>
<td>1,6</td>
<td>184.12</td>
</tr>
</tbody>
</table>
Acknowledgement: We are thankful to NICT Japan World data centre for making ionospheric data available on web Site. We are also thankful to the World Data Center, Kyoto University, Kyoto, Japan for geomagnetic indices data Dst. The Z component of interplanetary magnetic field Bz in Geocentric Solar Magnetospheric (GSM) coordinate downloaded from National Space Science Data Center, NASA/Goddard.

Thanks for your time.